Quesito 1

Sistemi di rilevazione per microdosimetria di particelle cariche.
Quesito 2

Sistemi di rilevazione per dosimetria di particelle cariche.
Sistemi di rilevazione per la dosimetria assoluta e relativa di fasci di particelle cariche ad elevata intensità.
Quesito 4

Metodi di simulazione Montecarlo per lo studio della interazione radiazione materia.
BaBar celebrates its 25th anniversary

On 8 December 2001, BaBar was observed to violate CP symmetry, which had been predicted within the Standard Model and which had not been observed before. This discovery was a significant milestone in particle physics and marked the first direct observation of CP violation in nature. The BaBar experiment, based at SLAC, is a major milestone for high-energy physics and has contributed significantly to our understanding of the fundamental forces of the universe. Today, BaBar continues to be a leading experiment in the field of particle physics, pushing the boundaries of our understanding of the Standard Model and the nature of matter and antimatter.
FIELD NOTES

Reports from events, conferences and meetings

Babar collaboration
Babar celebrates its 25th anniversary

On December 20, 2016, 25 years after its very first data taking, the Babar collaboration made some sadness in the LHC, turned its back on hierarchy and decayed. Nevertheless, Babar still has a lot of surprises up its sleeve, including some that may yet come. In fact, Babar has just celebrated its 25th anniversary, marking the end of an era in particle physics.

The Babar collaboration made the first direct observation of CP violation, a phenomenon that challenges the traditional view of the universe. Babar continued to

collect data as the TLG3 experiment which led to the first observation of CP violation in the standard model of particle physics. Babar has also made significant contributions to the understanding of the quark structure of the universe, including the study of quarkonia and the search for the Higgs boson.

In addition to its own research, Babar has also played a key role in the development of new technologies and the training of the next generation of particle physicists. Babar has been at the forefront of the LHC experiments, providing data and tools that have helped to advance our understanding of the universe.

Babar's success is a tribute to the dedication and hard work of its members, who have contributed to the advancement of science and technology. Babar's legacy will undoubtedly continue to inspire future generations of physicists to explore the mysteries of the universe.
BaBar celebrates its 25th anniversary

On 15 November 2016, 25 years after the first successful measurements of the BaBar detector, the collaboration gathered to celebrate its many successes. The BaBar detector, a world-class detector for physics, has been a cornerstone of lepton-anti-lepton physics and has contributed significantly to our understanding of the fundamental forces of nature. The collaboration is currently working on the extraction of new data, including the most recent results from the BaBar experiment.

The collaboration has made many important discoveries, including the first observation of the QCD penguin effect, the first observation of the charm quark, and the first observation of the tau lepton. These discoveries have helped to advance our understanding of the Standard Model of particle physics and have opened up new avenues for research.

The BaBar collaboration is composed of physicists from around the world, including universities, national laboratories, and research institutions. The collaboration is committed to continuing its work to make further contributions to our understanding of the universe.

The BaBar collaboration also celebrated its 25th anniversary with a series of lectures and workshops, inviting researchers from around the world to share their latest results and insights. The collaboration has made significant contributions to the field of particle physics, and its work continues to inspire and motivate new generations of physicists.

The BaBar collaboration continues to make important contributions to our understanding of the universe and to advance our knowledge of the fundamental forces of nature. The collaboration is committed to continuing its work to make further contributions to our understanding of the universe.

The BaBar collaboration is grateful to all of its members and to the many institutions and organizations that have supported its work. The collaboration looks forward to continuing its important work in the years to come.
FIELD NOTES

Reports from events, conferences and meetings

BaBar celebrates its 25th anniversary

On 21 December 2020, 25 years after its inaugural meeting, the BaBar collaboration came together at the SLAC National Accelerator Laboratory in Menlo Park, California, to celebrate the 25th anniversary of the project. The BaBar collaboration is a high-precision, high-statistics detector for the study of B meson physics, and has made significant contributions to our understanding of the Standard Model of particle physics.

The collaboration is particularly known for its discovery of the so-called "BaBar effect," which was the first observation of CP violation in the B-meson system. This discovery led to the eventual measurement of the CP violation parameter, which is one of the key parameters used to test the Standard Model. The BaBar collaboration has also made many other important discoveries, including the observation of the lambda(5000) baryon and the tau lepton, which were both predicted by the Standard Model but had not been observed before.

The BaBar collaboration consists of over 200 physicists from 60 institutions worldwide, and has produced over 2000 scientific publications. The collaboration has been supported by funding from many nations, including the United States, Canada, Italy, France, Germany, China, and Japan.

The 25th anniversary celebration included a variety of activities, including a scientific symposium, a gala dinner, and a series of talks by former and current members of the collaboration. The event was attended by many of the collaboration's scientific leaders, as well as by many of the scientists who have contributed to the collaboration's success.

The BaBar collaboration is continuing its work, and has several important experiments underway. The collaboration is particularly focused on the study of rare B-meson decays, which are sensitive probes of new physics beyond the Standard Model. The BaBar collaboration is also collaborating with the LHCb collaboration at CERN to study B-meson physics, and has plans to continue making important contributions to our understanding of the universe.

Although the original BaBar detector was operated near the Brookhaven National Laboratory in New York, the collaboration has continued to grow and evolve, and has become one of the most important and successful collaborations in high-energy physics. The BaBar collaboration is a testament to the power of international collaboration in science, and to the dedicated efforts of the many physicists who have contributed to its success.